

hotcontrol Temperaturregler C 148 Bedienungsanleitung

WARNSYMBOL

△ Beachten Sie die Warnsignale während des Betriebs. Bei Nichtbefolgen oder ungenauem Befolgen kann es zu Personenschäden oder Schäden am Gerät, Produkt oder System kommen. Fahren Sie bei dem Warnsymbol nicht fort bis die angezeigten Gegebenheiten vollständig verstanden und behoben wurden.

Benutzerhinweise

Einbauhinweise Lesen Sie Kapitel 1,2 Systemgestaltung Lesen Sie alle Kapitel Hinweise für Spezialisten Lesen Sie Kapitel 10

Hinweis: Es wird empfohlen im Regelprozess einen zusätzlichen Übertemperaturbegenzer zu verwenden, der eine Abschaltung des Sytems bei einem Fehler im Regelkreis sicherstellt. Damit sollen mögliche Schäden am Produkt oder System ausgeschlossen werden.

Technische Änderungen in dieser Bedienungsanleitung behalten wir uns vor.

Diese Anleitung gilt für alle Produkte mit der Softwareversion 23 und neuere Versionen.

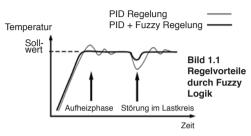
Die englische Bedienungsanleitung finden Sie auf unserer homepage You will find the English user manual on our homepage https://www.hotset.com/us/downloads/downloads/

Inhaltsangabe

Кар	itel 1 Übersicht		Kapitel 3 Programmierung	
1-2 1-3	Allgemeines Tasten und Anzeigen Bedienübersicht Parameterbeschreibungen	5 8 10 11	3-1 Verriegelung3-2 Signaleingang3-3 Regelausgang3-4 Alarm	24 24 25 29
	itel 2 Installation		3-5 Konfiguration des Benutzermenüs	30
2-2	Auspacken Montage	18 18	3-6 Rampe3-7 Timer3-8 Fühlerkorrektur	31 32 33
2-4	Vorsichtsmaßnahmen bei der Verdrahtung Betriebsspannung	19 21	3-9 Digitalfilter3-10 Fehleranzeige3-11 Automatische Adaptierung	34 35
2-6	Richtlinien für die Fühlerpositionierung Fühleranschluss Ausgang für Halbleiterrelais	21 22 22	(Auto-tuning) 3-12 Manuelle Adaptierung 3-13 Manueller Betrieb	36 38 39
	Alarmausgang	23	Kapitel 4 Technische Daten	
			Technische Daten	40
			Anhang	4-
			A-1 Fehlercodes	45

Inhaltsangabe

ABBILDUNGEN & TABELLEN				
Abbildung 1.1	Regelvorteile durch FuzzyLogik	6		
Abbildung 1.3	Beschreibung der Frontansicht	9		
Abbildung 1.4	Initialisierungsanzeige	9		
Abbildung 2.1	Montageabmessungen	19		
Abbildung 2.3	Kabelschuhe	20		
Abbildung 2.6	Schaltbild Rückseitige Anschlussklemmen	20		
Abbildung 2.7	Schaltbild Betriebsspannung	21		
Abbildung 2.8	Schaltbild Fühleranschluss	22		
Abbildung 2.11	Schaltbild Halbleiterrelaisanschluss	22		
Abbildung 2.19	Schaltbild Alarmausgang	23		
Abbildung 2.20	Schaltbild Alarmausgang zur Steuerung			
	eines externen Schützes	23		
Abbildung 3.2	Konfiguration als Ein/Aus-Regler	25		
Abbildung 3.3	Abweichungsalarm	28		
Abbildung 3.4	Prozessalarm (Low)	28		
Abbildung 3.5	Rampenfunktion	31		
Abbildung 3.6	Ablauftimer	32		
Abbildung 3.7	Anwendung Fühlerkorrektur	33		
Abbildung 3.8	Filtereigenschaften	34		
Abbildung 3.9	Auswirkungen der PID-Anpassung	39		
Tabelle 1.1	Erklärung Displaysymbolanzeige	9		
Tabelle 3.2	PID-Anpassung	38		
Tabelle A.1	Fehlercode und Abstellmaßnahmen	45		


Die Fuzzy Logic plus-Regelgeräte sind mit zwei gut abzulesenden vierstelligen LED-Anzeigen ausgestattet, die den Prozesswert (Istwert) und den Sollwert anzeigen. Durch die Fuzzy Logik wird ein vorher bestimmter Sollwert innerhalb kürzester Zeit mit minimalem Überschwingen während des Hochfahrens oder bei einer externen Laststörung erreicht.

hotcontrol C148 ist ein 1/16 DIN (48 x 48 mm) großes Regelgerät. Es wird mit einer Betriebsspannung von 90-250 VAC oder 11-26 VDC/VAC versorgt und hat einen Ausgang für Halbleiterrelais (14V/40mA für SSR) als Standard.

Es können sechs Alarmtypen und ein Timer als Alarmausgang konfiguriert werden. Der Fühlereingang kann für PT100 und die Thermoelemente "J, K, T, E, B, R, S, N, L" eingestellt werden. Das Eingangssignal wird durch einen 18-Bit A-D-Wandler digitalisiert. Die schnelle Abtastfrequenz ermöglicht eine schnelle Regelung der Prozesse

Durch die integrierte Fuzzy PID Technologie, kann der Regler Über- und Unterschwingungen in kurzer Zeit minimieren. Das folgende Diagramm stellt den Vergleich mit und ohne Fuzzy-Technologie dar.

Bild 1.1 Regelvorteile duch Fuzzy Logik

Hohe Genauigkeit

Die Serie wurde mit einer anwendungsspezifischen ASIC (Application Specific Integrated Circuit) Technologie ausgestattet, die einen 18-Bit A-D-Wandler für eine hohe Auflösung der Messung (0.1°F Auflösung für Thermoelemente und Pt100) enthält. Die ASIC-Technologie bietet verbesserte Betriebsleistung, geringere Kosten, verbesserte Verlässlichkeit und geringere Baugröße.

Schnelle Abtastrate

Die Abtastrate des Eingangs vom A-D-Wandler beträgt 5 Mal/Sekunde. Sie ermöglicht eine schnelle Regelung der Prozesse.

Fuzzy Reaeluna

Die Funktion der Fuzzy Regelung passt die PID Parameter von Zeit zu Zeit an, um eine flexible Steuerung des Ausgangswertes für zahlreiche, verschiedene Prozesse zu erreichen. Daraus resultiert, dass ein Prozess den vorher bestimmten Sollwert innerhalb kürzester Zeit mit minimalem Überschwingen und Unterschwingen beim Hochfahren und externer Laststörung erreicht.

Automatische Adaptierung (Autotuning)

Die automatische Adaptierung ermöglicht dem Anwender eine einfache Inbetriebnahme bei einem neuen System. Ein cleverer Algorithmus ermöglicht ein optimales Einstellen der Regelparameter für den Prozess. Diese kann entweder während der Aufwärmphase (Kaltstart) oder während des laufenden Prozesses (Warmstart) durchgeführt werden.

Verriegelungsschutz

Gemäß den jeweiligen Sicherheitsanforderungen kann eine von vier Verriegelungsstufen ausgewählt werden, um das Sytem vor falschen Einstellungen zu schützen.

Stellerbetrieb

Der Stellerbetrieb ermöglicht mit einem festen Ausgangsleistungswert weiter zu arbeiten, wenn der Fühler bricht. Daher kann der Prozess mit ähnlichen Bedingungen fortgesetzt werden, als wenn der Fühler in Betrieb wäre.

Softstart-Rampe

Die Rampenfunktion wird in der Aufheizphase und bei Änderung des Sollwertes ausgeführt. Sie kann beschleunigt oder verlangsamt werden. Der Prozesswert erreicht den Sollwert in einer vorher bestimmten konstanten Geschwindigkeit.

Digitalfilter

Ein Tiefpassfilter (Erster Ordnung) kann mit einer programmierbaren Zeitkonstante versehen werden, um den Prozesswert zu stabilisieren. Das ist bei Anwendungen empfehlenswert, bei denen der Prozesswert zu unbeständig ist.

SEL Funktion

Der Regler ist so flexibel, dass der Anwender die Parameter einstellen kann, die für ihn am wichtigsten sind. Diese werden dann als erstes in der Parametersequenz im Benutzermenü anzeigt. Es können maximal 8 Parameter für das Benutzermenü ausgewählt werden.

TASTATURBEDIENUNG

SCROLL TASTE

Mit dieser Taste kann ein Parameter angezeigt oder angepasst werden.

▼ MINUS-TASTE

Mit dieser Taste kann der Wert eines ausgewählten Parameters verringert werden

R RESET TASTE

Diese Taste kann folgendermaßen genutzt werden:

- 1. Anzeigen des Prozesswertes.
- Neusetzen des Verriegelungsalarms, wenn die Fehlermeldung behoben wurde.
- Beendigung des manuellen Regelungsmodus, automatischen Einstellungsmodus und Kalibrierung.
- Löschen der Nachricht eines Kommunikationsfehlers und automatischen Einstellungsfehlers.
- Neustart des Timers, wenn der Timer ausgesetzt hat.
- 6. Zugang zum manuellen Regelungsmenü, wenn ein Fehler auftritt.

▲ PLUS-TASTE

Mit dieser Taste kann der Wert eines ausgewählten Parameters erhöht werden

EINGABETASTE

Drücken Sie 5 Sekunden oder länger um:

- 1. zum Konfigurationsmenü zu gelangen. Das Display zeigt: SEŁ.
- zum manuellen Regelungsmodus (Stellerbetrieb) zu gelangen, wenn der Modus HRnd ausgewählt ist.
- zur automatischen Adaptierung (Autotuning) zu gelangen, wenn R-E ausgewählt ist.
- zum Kalibrieren eines ausgewählten Parameters während des Kalibrierungsverfahrens.

Drücken Sie 6,2 Sekunden, um den manuellen Regelungsmodus auszuwählen.

Drücken Sie 7,4 Sekunden, um den Modus für die automatische Adaptierung (Autotuning) auszuwählen.
Drücken Sie 8.6 Sekunden um den

Kalibrierungsmodus auszuwählen.

Bild 1.3 Beschreibung der Frontansicht

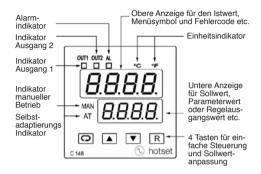


Tabelle 1.1 Darstellungserläuterung

Α	R	Е	Ε	Ι	,	Ν	n	S	5	Х	
В	Ь	F	F	J	j	0	0	Η	٤	Υ	3
С	Ε	G	Ū	Κ	F	Ρ	ρ	כ	c	Ζ	
С	c	Ι	Н	L	L	Q		٧	ıد	?	7
D	б	h	Н	М	٦.	R	٦	W		=	1.

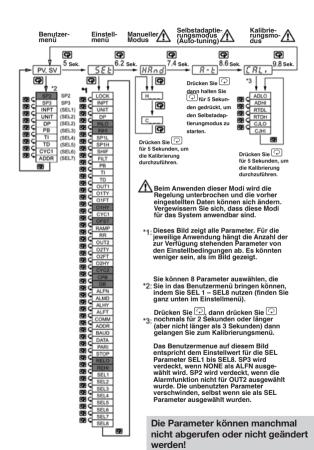

▼: Verwirrung möglich

Bild 1.4 Initialisierungsanzeige

Anzeige des Programmcodes für 2.5 Sek.

Das Diagramm zeigt Programm Nr. 6 für C148 mit Version 24.

Parameter- bezeichnung	Parameter-be- schreibung	Bereich	Standard- einstellung
SP1	Sollwert Ausgang 1	niedrig: SP1L hoch: SP1H	25.0 °C (77.0°F)
SP2	Sollwert Ausgang 2, wenn Ausgang 2 als Alarmfunktion dient	niedrig: -19999 hoch: 45536	10.0 °C (18.0°F)
SP3	Sollwert Alarm- ausgang oder Ablauftimer	niedrig: -19999 hoch: 45536	10.0 °C (18.0°F)
LOCK	Auswahl von Parametern zur Verriegelung	none kein Parameter ist verriegelt SEE Einstelldaten sind verriegelt SEE Einstelldaten und Benutzerdaten außer der Sollwert sind verriegelt RLL alle Daten sind verriegelt	0
INPT	Auswahl Eingangs- fühler	0 J_EE Thermoelement Typ J 1 E_EE Thermoelement Typ K 2 E_EE Thermoelement Typ T 3 E_EE Thermoelement Typ E 4 b_EE Thermoelement Typ B 5 r_EE Thermoelement Typ B 6 S_EE Thermoelement Typ R 7 r_EE Thermoelement Typ N 8 L_EE Thermoelement Typ N 8 L_EE Thermoelement Typ L 9 PE_GP Pt 100 DIN Kurve 10 PE_GP Pt 100 DIN Kurve 11 Y=20 4-20 mA linearer Stromeingang 12 D=20 0-20 mA linearer Stromeingang 13 D=60 0-60 mA linearer Stromeingang 14 D=12 0-10 linear voltage input 15 D=52 0-50 linear voltage input 16 I=52 1-50 linear voltage input 17 D=10 0-100 linear	0

Parameter- bezeichnung	Parameter- beschreibung	Bereich	Standard- einstellung
UNIT	Einheiten- auswahl	0 ºC : Temperatureinstellung in Grad Celsius 1 ºF : Temperatureinstellung in Grad Farenheit 2 Pu : Prozesseinheit	0
DP	Dezimal- stellenauswahl	0 no.dP: ohne Dezimalstelle 1 i-dP: eine Dezimalstelle 2 2-dP: zwei Dezimalstellen 3 3-dP: drei Dezimalstellen	0
INLO	Niedriger Eingangs- skalenwert	Niedrig: -19999 hoch: 45486	-17.8 °C (0 °F)
INHI	Hoher Eingangs- skalenwert	Niedrig: INLO+50 hoch: 45536	93.3 °C (200.0 °F)
SP1L	Untere Soll- wertgrenze	Niedrig: -19999 hoch: 45536	-17.8 °C (0 °F)
SP1H	Obere Sollwert- grenze	Niedrig: SP1L hoch: 45536	537.8 °C (1000 °F)
SHIF	Fühlerkorrektur (Offset)	Niedrig: -200.0 °C (-360.0 °F) hoch: 200.0 °C (360.0 °F)	0.0
FILT	Dämpfungszeit des Filters be- zogen auf den Temperatur- Istwert	0 0 0 Sek. 1 0.2 0.2 Sek. 2 0.5 0.5 Sek. 3 1 1 Sek. 4 2 2 Sek. 5 5 5 Sek. 6 10 10 Sek. 7 20 20 Sek. 8 30 30 Sek. 9 50 60 Sek.	2

Parameter- bezeichnung	Parameter- beschreibung	Bereich	Standard- einstellung
PB	Proportionalband	Niedrig: 0 hoch: 500.0 °C (900.0 °F)	10.0 °C (18.0 °F)
TI	Integralzeitwert	Niedrig: 0 hoch: 1000 Sek.	100
TD	Differentialzeitwert	Niedrig: 0 hoch: 360.0 Sek.	25.0
OUT1	Funktion Ausgang 1	0 r E Yr inverses Regelverhalten (heizen) 1 d r E direktes Regelverhalten (kühlen)	0
O1TY	Signal Ausgang 1	0 r EL Y Relaisausgang 1 55r d Elektronischer Treiberausgang für Halbleiterrelais (14V, 40mA) 2 55r Ausgang Halbleiterrelais 3 Y-20 4-20 mA Stromausgang 4 0-20 0-20 mA Stromausgang 5 0-19 0-1 V Spannungsausgang 7 1-5Y 0-5 V Spannungsausgang 8 0-10 0-10 V Spannungsausgang	1
O1FT	Ausgang1 Fehleranzeige- modus (Fühlerbruch)	Wählen Sie BPLS (Autoleistungssteller) oder 0,0 – 100,0 % um beim Fühlerbruch die Regelfunktion weiterlaufen zu lassen oder wählen sie OFF (0) oder ON (1) für Ein-Aus Regelung	0
O1HY	Ausgang 1 ON-OFF Regelhysterese	Niedrig: 0.1 hoch: 50.0 °C(90.0°F)	0.1°C (0.2°F)
CYC1	Ausgang 1 Schaltzeit	Niedrig: 0.1 hoch: 90.0 Sek.	1
OFST	Offset für P Regelung	Niedrig: 0 hoch: 100.0 %	25.0
RAMP	Rampenfunktions- auswahl	0 nonE keine Rampenfunktion 1 nor Rampenrate: °C (°F) / Minute (MinR) 2 Hr.r Rampenrate: °C (°F) / Stunde (HrR)	0

Parameter- bezeichnung	Parameter- beschreibung	Bereich	Standard- einstellung
RR	Rampenwert	Niedrig: 0 hoch: 500.0 °C (900.0 °F)	0.0
OUT2	Funktion Ausgang 2	O nonE Ausgang 2 keine Funktion dE.La Abweichungsalarm hohe Werte dE.La Abweichungsalarm niedrige Werte PY.N. Prozessalarm hohe Werte PY.La Prozessalarm niedrige Werte Eacl PID Kühlfunktion	2
O2TY	Ausgang 2 Signalart	0 rELY Relaisausgang 1 SSr.d' Elektronischer Treiberausgang für Halbleiterrelais 2 SSr. Ausgang Halbleiterrelais 3 Y-20 4-20 mA Stromausgang 4 0-20 0-20 mA Stromausgang 5 0-14 0-5V Spannungsausgang 7 0-5Y 1-5V Spannungsausgang 8 0-10 0-10V Spannungsausgang	0
O2FT	Ausgang 2 Fehleranzeige- modus (Fühlerbruch)	Wählen Sie BPLS (Autoleistungssteller) oder 0,0 – 100,0 % um beim Fühlerbruch die Regelfunktion weiterlaufen zu lassen oder wählen sie OFF (0) oder ON (1) für Ein-Aus Regelung	0
O2HY	Ausgang 2 ON-OFF Regel- hysterese	Niedrig: 0.1 hoch: 50.0 °C (90.0 °F)	0.1 °C (0.2 °F)
CYC2	Ausgang 2 Schaltzeit	Niedrig: 0.1 hoch: 90.0 Sek.	18.0
СРВ	Kühlungspro- portionalband	Niedrig: 50 hoch: 300%	100

Parameter- bezeichnung	Parameter- beschreibung	Bereich	Standard- einstellung
DB	Tote Zone heizen/ kühlen (negativer Wert = Überlap- pend)	Niedrig: -36.0 hoch: 36.0 %	0
ALFN	Alarmfunktion für Alarmausgang	0 none keine Alarmfunktion 1 Lin keine Alarmfunktion 2 dE.H. Abweichungsalarm hohe Werte 3 dE.Lo Abweichungsalarm niedrige Werte 4 db.H. Abweichungsband außerhalb des Bandalarms 5 db.Lo Abweichungsband außerhalb des Bandalarms 6 PY.H. Prozessalarm hohe Werte 7 PY.Lo Prozessalarm niedrige Werte	2
ALMD	Alarmarten	Onorō normaler Alarm 1 LEch Selbsthaltend (Latch) 2 HoLd Sollwertverriegelt 3 LEHo Selbsthaltend und Sollwertverriegelt	0
ALHY	Alarm- Hysterese	Niedrig: 0.1 hoch: 50.0 °C (90.0 °F)	0.1 °C (0.2 °F)
ALFT	System- fehleralarm	Alarmausgang "EIN" bei Fühlerbruch oder Fehler im AD-Wandler ausfällt AFF Alarmausgang "AUS" bei Fühlerbruch oder Fehler im AD-Wandler	0
СОММ	Kommunika- tionsfunktion	0 nonE keine Kommunikation 1 rEu Modbus RTU Modusprotokoll 2 Y=20 4-20mA 3 0-20 0-20mA 4 0-5Y 0-5V 5 I-5Y 1-5V 6 0-10 0-10V	1

Parameter- bezeichnung	Parameter-be- schreibung	Bereich	Standard- einstellung
ADDR	Adresse (digitale Kommunikation)	Niedrig: 1 hoch: 255	_
BAUD	Datenübertragungs- geschwindigkeit	0 2.4 2.4 Kbits/s 1 4.8 4.8 Kbits/s 2 9.5 9.6 Kbits/s 3 14.4 14.4 Kbits/s 4 19.2 19.2 Kbits/s 5 28.8 28.8 Kbits/s 6 38.4 38.4 Kbits/s	2
DATA	Anzahl der Datenbits	0 Tbit 7 Datenbits 1 Bbit 8 Datenbits	1
PARI	Prüfbit	0 EYEn gleiche Parität 1 odd ungerade Parität 2 nonE kein Prüfbit	0
STOP	Stoppbit	0 lbi는 ein Stop-Bit 1 라는 zwei Stop-Bits	0
RELO	Messwandler niedriger Wert Beispiel: Thermo -> 4-20mA	Niedrig: -19999 hoch: 45536	0.0 °C (32.0 °F)
REHI	Messwandler hoher Wert	Niedrig: -19999 hoch: 45536	100.0 °C (212.0°F)
SEL1	Auswahl des ersten Parameters für das Benutzermenü	0 nonE keine Parameterauswahl 1 Lock Verrigelung (Lock) ausgewählt 2 mPE Fühlerumschaltung (INPT) ausgewählt 3 ondE Einheit (UNIT) ist ausgewählt 4 dP Dezimalstellen (DP) ausgewählt 5 SH:F Fühlerkorrektur, Offset (SHIF) ist ausgewählt 6 Pb PB ist ausgewählt 7 List ausgewähl	2

Parameter- bezeichnung	Parameter- beschreibung	Bereich	Standard- einstellung
SEL1	Auswahl des 1. Parameters für Benutzermenü	8 Ed TD ist ausgewählt 9 a LHY OTHY ist ausgewählt 10 CYC! CYC1 ist ausgewählt 11 aFSE OFST ist ausgewählt 12 r.r. RR ist ausgewählt 13 aZHY OZHY ist ausgewählt 14 CYC2 CYC2 ist ausgewählt 15 C.Pb CPB ist ausgewählt 16 d.b DB ist ausgewählt 17 Rddr ADDR ist ausgewählt 18 RLHY ALHY ist ausgewählt	2
SEL2	Auswahl des 2. Parameters für Benutzermenü	Genauso wie SEL1	3
SEL3	Auswahl des 3. Parameters für Benutzermenü	Genauso wie SEL1	4
SEL4	Auswahl des 4. Parameters für Benutzermenü	Genauso wie SEL1	6
SEL5	Auswahl des 5. Parameters für Benutzermenü	Genauso wie SEL1	7
SEL6	Auswahl des 6. Parameters für Benutzermenü	Genauso wie SEL1	8
SEL7	Auswahl des 7. Parameters für Benutzermenü	Genauso wie SEL1	10
SEL8	Auswahl des 8. Parameters für Benutzermenü	Genauso wie SEL1	17

⚠ Gefährliche Spannungen können bei diesem Gerät manchmal zum Tode führen. Deshalb sollten Sie vor dem Einbau oder Service die Gefahr mindern, indem das Gerät vom Strom genommen wird und isoliert wird. Einheiten, die fehlerhaft sein könnten werden demontiert und überprüft bzw. repariert. Der Einbau von Ersatzteilen und anderen Anpassungen darf nur von Fachpersonal durchgeführt werden.

⚠ Dieses Gerät ist durch eine doppelte Isolierung 🗖 geschützt. Um die Brandgefahr oder elektrische Schläge zu minimieren, schützen Sie das Gerät vor Regen oder Nässe.

⚠ Nutzen Sie das Gerät nicht unter gefährlichen Bedingungen wie starke Erschütterungen, Vibrationen, Schmutz, Feuchtigkeit, Schadgase oder Öle. Die Umgebungstemperatur sollte nicht die max. Einsatztemperatur überschreiten (siehe Kapitel 4).

⚠ Entfernen Sie Schmutz von diesem Gerät, indem Sie einen weichen trockenen Lappen nutzen. Verwenden Sie für die Reinigung keine scharfen Chemikalien, Lösungsmittel wie z. B. scharfe Reinigungsmittel, so vermeiden Sie Deformierung oder Verfärbung des Gerätes.

2-1 AUSPACKEN

Nach Erhalt der Ware, nehmen Sie das Gerät aus dem Karton und überpüfen Sie das Gerät auf Transportschäden. Wenn ein Schaden beim Transport erfolgt ist, wenden Sie sich an den Spediteur. Bei Reklamationen nennen Sie uns die Gerätenummer, die Seriennummer und den Datumscode. Die Seriennummer (S/N) und der Datumscode (D/C) sind auf dem Gerät aufgeklebt.

2-2 EINBAU

Der Schalttafelausschnitt muss gemäß Bild 2.1 vorbereitet werden. Entfernen Sie beide Befestigungsklammern und setzen Sie den Regler in den Schalttafelausschnitt. Die Befestigungsklammern werden wieder in die Führung gesetzt. Schieben Sie die Befestigungsklammern in Richtung Schalttafel, bis der Regler in dem Ausschnitt befestigt ist.

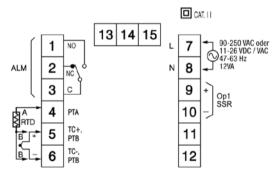
Bild 2.1 Einbaumaße

2-3 VORSICHTSMASSNAHMEN BEI DER VERDRAHTUNG

- Vor der Verdrahtung pr

 üfen Sie die Verdrahtungskennzeichnung auf dem Typenschild. Schalten Sie den Strom bei der Pr

 üfung ab.
- Es muss gewährleistet sein, dass die maximale Spannung, die auf dem Typenschild genannt ist, nicht überschritten wird.
- Es wird empfohlen, dass die Leistung dieser Geräte durch Gerätesicherungen oder Leistungsschutzschalter abdesichert werden.
- Alle Einzelregler sollten in ein passendes geerdetes Metallgehäuse eingebaut werden, um spannungsführende Teile gegenüber Berührung mit der Hand oder metallischen Werkzeugen zu schützen.
- Die Verdrahtung muss den lokalen


Normen und Bestimmungen entsprechen. Die Verdrahtung muss für die Spannung, Strom und Temperatur des Systems ausgelegt sein.

- Ziehen Sie die Klemmschrauben nicht zu fest an. Der Drehmoment sollte 1 Nm (8,9 Lb-in oder 10,2KgF-cm) nicht überschreiten.
- Unbenutzte Anschlussklemmen sollten nicht als Verteiler genutzt werden, da diese intern verdrahtet sind und das Schäden hervorrufen könnte.
- Gewährleisten Sie, dass die Werte für den Ausgang und Eingang wie im Kapitel 4 genannt, nicht überschritten werden.
- Alle Leitungen sind Kupferleiter mit einer maximalen Drahtstärke von 18 AWG (0,75 mm²) außer die Thermoelementverdrahtung.

Bild 2.3 Kabelschuhe

Bild 2.6 Schaltbild Rückseitige Anschlussklemmen

Max. Umgebungstemperatur 50 °C Verwenden Sie Kupferleiter (außer beim Thermoelement) Das Regelgerät ist für 90-250 VAC oder 11-26 VDC/VAC ausgelegt. Prüfen Sie, ob die Einbauspannung mit der Spannung auf dem Produktschild übereinstimmt, bevor Sie das Regelgerät anschließen. In der Nähe des Regelgerätes sollte eine elektrische Sicherung und ein Schalter, der auf 2A/250VAC eingestellt wurde, gemäß folgendem Bild angebracht sein:

Bild 2.7 Schaltbild Betriebsspannung

⚠ Dieses Gerät ist so konstruiert, dass es in einem Gehäuse eingebaut werden soll als Schutz gegen elektrische Schläge. Das Gehäuse muss geerdet sein. Örtliche Anforderungen bezüglich der elektrischen Installation sollten genauestens beachtet werden. Des Weiteren sollten die Anschlussklemmen vor unsachgemäßer Handhabung geschützt sein.

2-5 Richtlinien für die Fühlerpositionierung

Der sorgfältige Einbau der Fühler kann Probleme im Regelsystem vermeiden. Der Fühler sollte so angebracht sein, dass jede Temperaturänderung mit minimaler zweitlicher Verzögerung erkennt. Bei einem Prozess, der eine konstante Temperatur benötigt, sollte der Fühler nahe am Heizer angebracht sein. Bei einem Prozess, bei dem die Temperatur variabel ist, sollte der Fühler nahe der Arbeitsumgebung angebracht sein. Meistens sind einige Tests erforderlich, um die optimale Fühlerposition herauszufinden.

Bei einer Erwärmung flüssiger Medien, sollte ein Rührer hinzugenommen werden, um thermische Unterschiede zu vermeiden.

Da das Thermoelement grundsätzlich dazu dient, den Messpunkt zu messen, können mehrere Thermoelemente dazu dienen, die Durchschnittstemperatur zu messen und bessere Ergebnisse bei den meisten Heißluftprozessen zu liefern.

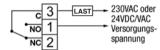
2-7 Ausgang für Halbleiterrelais

Die richtige Fühlerart ist ebenfalls sehr wichtig, um genaue Messungen zu erhalten. Der Fühler muss den richtigen Temperaturbereich abdecken, um den Prozessanforderungen zu entsprechen. Bei speziellen Prozessen kann es unterschiedliche Anforderungen an den Fühler geben, wie Dichtheit, Antivibration, Antiseptikum etc.

Standardabweichungen der Fühler sind ±4 Grad F (± 2 Grad C) oder 0,75% der gemessenen Temperatur (für spezielle Fühler gilt der halbe Wert) plus Drift, welche durch unsachgemäßen Schutz oder zu hoher Temperatur hervorgerufen wird. Dieser Messfehler ist weit größer, als der Messfehler am Regler und kann nicht behoben werden. Der Messfehller des Fühlers kann durch gute Auswahl des Fühlers bzw. Austausch minimiert werden.

2-6 FÜHLERANSCHLUSS

Bild 2.8 Schaltbild Fühleranschluss



2-7 AUSGANG FÜR HAI BI FITERREI AIS

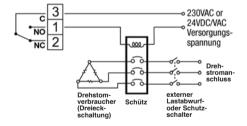

Bild 2.11 Schaltbild Halbleiterrelaisanschluss (Ausgang 1)

Bild 2.19 Schaltbild Alarmausgang

Bild 2.20 Schaltbild Alarmausgang zur Steuerung eines externen Schützes

3-2 Signaleingang

3. Programmierung

Drücken Sie für 5 Sekunden 🕡 und Sie gelangen zum Einstellmenü. Drücken Sie 🕡 um den gewünschten Parameter auszuwählen. Die obere Anzeige zeigt das Parametersymbol und die untere Anzeige zeigt den ausgewählten Wert.

3-1 VERRIEGELUNG

Es können vier Sicherheitsstufen durch den LOCK-Parameter ausgewählt werden.

Falls NONE bei LOCK ausgewählt wird, dann ist kein Parameter verriegelt.

Falls SET bei LOCK ausgewählt wird, werden alle Einstelldaten verriegelt.

Falls USER bei LOCK ausgewählt wird, werden alle Einstelldaten und Benutzerdaten verriegelt (siehe Kapitel 1-3), nur der Sollwert kann noch verändert werden.

Falls ALL bei LOCK ausgewählt wird, werden alle Parameter verriegelt und können nicht geändert werden.

3-2 SIGNALEINGANG

INPT: Die Fühlerart kann ausgewählt werden.

(Thermoelement) J_TC, K_TC, T_TC, E TC, B TC, R TC

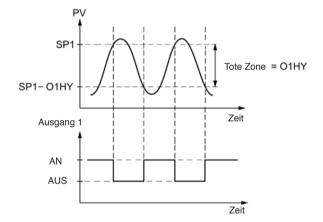
S TC, N TC, L TC

S_10, N_10, L_10

(Widerstandsfühler) Pt.DN, Pt.JS **UNIT:** Wählt die Prozesseinheit aus.

Option: °C. °F

DP: Wählt die Auflösung des Prozess-


wertes (Dezimalstellen).

Bereich: (für T/C und RTD) NO.DP, 1-DP

Konfiguration als EIN/AUS-Regler: O1HY wird genutzt um die tote Zone des EIN/AUS-Reglers anzupassen.

Der Ausgang 1Hysterese (O1HY) ist eingeschaltet, wenn PB = 0 ist. Die EIN/AUS-Funktion wird im folgenden Diagramm gezeigt:

BIId 3.2 Konfiguration als EIN/AUS-Regler

Die EIN/AUS-Regelung kann hohe Schwankungen hervorrufen, sogar wenn die Hysterese auf ein Minimum gehalten wird. Wenn die Ein/Aus-Regelung benutzt wird (d. h. PB = 0), haben TI, TD, CYC1, OFST, CYC2, CPB, DB keine Funktion. Die Selbstadaptierung und der Leistungssteller sind ebenso ausgeschaltet.

Regelung mit P (oder PD): Wählen Sie REVR als OUT1 und stellen Sie TLauf 0. OFST wird genutzt um die Offset anzupassen (manuelle Einstellung). O1HY ist ausgeblendet, falls PB ungleich 0, OFST Funktion: OFST ist im Bereich 0 - 100. 0 % einstellbar. Ist im eingeregeltem Zustand der Istwert niedriger als der Sollwert (z, B, 5° C bei PB = 20° C), welches 25%zu niedrig ist, dann erhöhen Sie OFST um 25%, und umgekehrt. Nachdem der OFST Wert angepasst wurde, wird sich der Istwert verändern und näherungsweise mit dem Sollwert übereinstimmen. Wenn die P-Regelung aktiviert ist (TI ist auf 0 gestellt), dann ist die Selbstadaptierung ausgeschaltet. Siehe Punkt 3-12 "Manuelle Adaptierung" für die Einstellung des PB und TD. Die manuelle Anpassung ist nicht praktikabel, da bei einer Laständerung der Parameter OFST manuell nachgestellt werden muss. Die PID Reglung kann diese Nachteile vermeiden. Heizbetrieb mit PID Regelung: Wählen Sie REVR für OUT1 aus. PB und TI dürfen nicht Null sein. Benutzen Sie die Automatische Adaptierng für einen neuen Prozess (Regelstrecke) oder nehmen Sie für PB. TI und TD die in der Vergangenheit ermittelten Werte Siehe Punkt 3-11 Automatische Adaptierung. Wenn des Reaeleraebnis immer noch unbefriedigend ist, dann nutzen Sie die manuelle Adaptierung um die Regelung zu verbessern. Siehe Punkt 3-12 Manuelle Adaptierung. Der Regler enthält einen inteligenten PID und Fuzzy Algorithmus, um sehr kleine Regelabweichung, sowie eine schnelle Reaktion auf den Regelprozess zu gewährleisten, wenn er aut eingestellt ist.

Regelung für Kühlbetrieb: Der Regler kann auch für den Kühlbetrieb genutzt werden. Stellen Sie OUT1 auf DIRT (direct action). Die anderen Funktionen zum Kühlbetrieb als Ein/Aus-Regelung, nur Kühlen P (PD) und nur Kühlen (PID) sind die Gleichen, wie bereits für den Heizbetrieb beschrieben, mit dem Unterschied, dass die Ausgangsvariable (und Funktion) für den Kühlbetrieb invertiert ist.

Bemerkung: Die EIN/AUS-Regelung wird ein großes Über-/Unterschwingverhalten aufweisen. Die P (oder PD) Regelung wird in einer Regelabweichung zum Sollwert resultieren. Es wird empfohlen die PID Reglung zum Heizen/Kühlen zu nutzen, um einen stabilen und regelabweichungsfreien Istwert zu erreichen.

CPB Programmierung: Das Kühl-Proportionalband (CPB) wird in einem Bereich von 50-300% eingestellt. Als Grundeinstellung setzen Sie den Wert für für CPB auf 100% und überprüfen die Auswirkungen auf das Kühlen. Wenn die Kühltätiakeit erhöht werden soll. vermindern Sie den Wert für CPB, wenn die Kühltätiakeit zu gering ist, erhöhen Sie den Wert für CPB. Der Wert des CPB bezieht sich auf das PB (Proportialband). Seine Werte bleiben während der Selbstadaptierung unverändert. Die Anpassung des CPB hängt von dem genutzten Kühlmedium ab. Wenn Luft als Kühlmedium genutzt wird, stellen Sie das CPB auf 100(%) an. Bei Öl stellen Sie das CPB auf 125(%). Bei Wasser auf 250(%).

Programmierung "Tote Zone" (DB): Die Einstellung der toten Zone hängt von den Systemanforderungen ab. Je größer der positive Wert für DB ist (größere tote Zone), desto eher wird ein ungewolltes Kühlen verhindert aber es führt gleichzeitig zu einem Überschwingen über den Sollwert. Je größer der negative Wert für DB ist (größere Überlappung), desto eher wird eine Überschwingen über den Sollwert verhindert. aber es kann gleichzeit zu ungewollten Kühlvorgängen führen. Sie kann im Bereich von -36.0% bis 36.0% des Proportionalbandes (PB) angepasst werden. Ein negativer Wert (tote Zone) zeigt einen Überlappungsbereich in dem beide Ausgänge aktiv sind. Ein positiver DB-Wert zeigt den Bereich der toten Zonen, bei dem kein Ausgang aktiv ist.

Bild 3.3 Abweichungsalarm hohe Temperatur

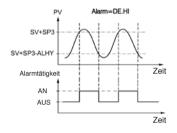
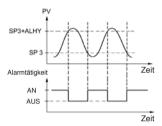



Bild 3.4 Prozessalarm niedrige Temperatur

Der Regler hat einen Alarmausgang. Es gibt 6 Arten von Alarmfunktionen und einen Ablauf-Timer. Für jede Alarmfunktion (ALFN) gibt es vier Alarmarten (ALMD).

Ein Prozessalarm hat zwei absolute Triggerwerte. Wenn der Istwert höher SP3 ist, wird ein Übertemperatur Alarm (PV.HI) ausgelöst. Der Alarm wird nicht aktiviert, bei einem Istwert niedriger als SP3 - ALHY. Ist der Istwert niedriger als SP3, wird ein Untertemperatur Alarm (PV.LO) ausgelöst. Dieser Alarm ist deaktiviert, wenn der Istwert größer als SP3+ALHY ist. Ein Prozessalarm ist unabhängig vom Sollwert.

Der Abweichungsalarm wird ausgelöst, wenn der Istwert zu weit vom Sollwert abweicht. Wenn der Istwert höher als SV +SP3 ist, wird der Abweichungsalarm (DE.HI) aktiviert. Der Alarm wird deaktiviert, wenn der Istwert niedriger als SV+SP3-ALHY ist. Wenn der Istwert niedriger als SV+SP3 ist, wird der Abweichungsalarm (DE.LO) aktiviert. Dieser Alarm ist deaktiviert, wenn der Istwert höher als SV+SP3+ALHY ist. Der Triggerwert des Abweichungsalarms verändert sich mit dem Sollwert.

Der Abweichungsbandalarm benötigt zwei Triggerwerte relativ zum Sollwert. Die zwei Triggerwerte sind SV+SP3 und SV - SP3. Bei einem Istwert höher als (SV+SP3 oder niedriger als (SV - SP3) (Außerhalb der Alarmgrenzen), wird der Alarm DB.HI aktiviert. Bei einem Istwert innerhalb der beiden Alarmgrenzen, wird der Alarm DB.LO ausgelöst. In der

obigen Beschreibung kennzeichnet der Sollwert den derzeitigen Temperatursollwert, dieser weicht vom SP1 ab, wenn die Rampenfunktion aktiv ist. TEs gibt vier Alarmarten für jede Alarmfunktion: Normaler Alarm, Alarmquittierung, Sollwertverriegelter Alarm und Quittierung/ Verriegelungsalarm. Diese werden nachstehend beschrieben:

Normaler Alarm: ALMD=NORM Wenn der normale Alarm ausgewählt wird, ist der Alarmausgang nur im Alarmzustand geschaltet.

Selbsthaltend (Latch): ALMD=LTCH Bei diesem Alarm, bleibt der Alarmausgang aktiv, auch wenn die Bedingung für den Alarmzustand nicht mehr besteht. Der Alarmzustand kann nur duch Drücken der RESET-Taste gelöscht werden.

Sollwertverriegelter Alarm:

ALMD=HOLD Bei diesem Alarm wird der Alarmausgang erst nach dem ersten Erreichen des Sollwertes aktiviert. Danach hat dieser Alarm die gleiche Funktion wie der normale Alarm.

Selbsthaltend/Sollwertverriegelter

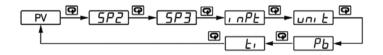
Alarm: ALMD=LT.HO Dieser Alarm ist eine Kombination aus Selbsthaltendund Sollwertverriegeltem Alarm. Bei diesem Alarm wird der Alarmausgang erst nach dem ersten Erreichen des Sollwertes aktiviert. Der Alarmausgang bleibt aktiv, auch wenn die Bedingung für den Alarmzustand nicht mehr besteht. Der Alarmzustand kann nur duch Drücken der RESET-Taste gelöscht werden

Systemfehleralarm: Wenn ALFT eingeschaltet (ON) wird bei einem Fühlerbruch oder Fehler im AD-Wandler der Alarmausgang aktiviert.

Die meisten am Markt erhältlichen Regler sind mit einem festen Parametermenü ausgestattet. Die C148-Serie bietet die Möglichkeit die Parameter, die am meisten benötigt werden, am Anfang des Benutzermenüs darzustellen.

SEL1~SEL8: Wählt die im Benutzermenü sichtbaren und editierbaren Parameter aus. Mögliche Parameter: LOCK, INPT, UNIT, DP, SHIF, PB, TI, TD, O1HY, CYC1, OFST, RR, O2HY, CYC2, CPB, DB, ADDR, ALHY

Wenn Sie die Hoch/Runtertaste betätigen, um die Parameter auszuwählen, werden unter Umständen nicht alle o. g. Parameter sichtbar sein. Die Anzahl der sichtbaren Parameter hängt vom Setup des Reglers ab. Die versteckten Parameter für bestimmte Anwendungen erscheinen auch nicht in der SEL-Auswahl.

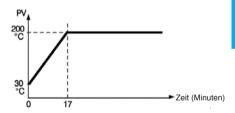

Beispiel:

OUT2 wählt DE.LO aus SEL2 wählt UNIT aus PB= 100.0 SEL3 wählt PB aus SEL1 wählt INPT aus

SEL4 wählt TI aus

SEL5~SEL8 wählt NONE aus

Jetzt sieht der Ablauf in der oberen Anzeige wie folgt aus:

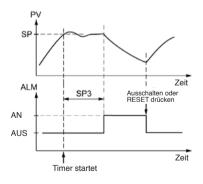


Die Rampenfunktion wird nach dem Einschalten sowie bei jeder Änderung des Sollwertes durchgeführt. Wird MINR oder HRR als Wert für RAMP ausgewählt, wird der Temperaturregler die Rampenfunktion ausführen. Die Rampensteigung (ramp rate) wird programmiert, indem man RR anpasst. Die Rampenfunktion wird ausgeschaltet sobald der Regler in den Fehlermodus, den manuellen Regelungsmodus, die automatische Selbstadaptierung oder in den Kalibrierungsmodus versetzt wird.

Beispiel ohne Timer

Wählen Sie MINR für RAMP, wählen Sie °C als Einheit (UNIT), stellen Sie DP auf 1-DP, Setzen Sie RR= 10.0. Sollwert ist 200 °C. Die Anfangstemperatur beträgt 30 °C. Nach dem Einschalten verläuft der Prozess wie folgt:

Bild 3.5 Rampenfunktion


Bemerkung: Wenn die Rampenfunktion genutzt wird, zeigt die untere Anzeige den aktuellen Rampenwert. Diese Anzeige wird zum Sollwert wechseln, sobald die Hoch- oder Runtertaste betätigt wird. Der Rampenwert wird zum Prozesswert, wenn die Aufheizzeit oder RR (ramp rate) und/oder der Sollwert geändert werden. Mit RR =0 ist die Rampenfunktion deaktiviert.

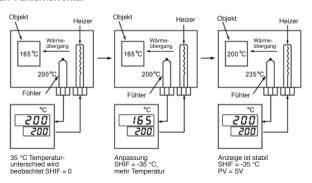
Der Alarmausgang kann als Timer konfiguriert werden, indem man TIMR als ALFN (Alarmfunktion) auswählt. Wenn der Timer konfiguriert ist, wird der Parameter SP3 für die Einstellung der Zeitvorgabe benutzt. Die Zeitvorgabe erfolgt in Minuten im Bereich von 0,1 bis 4553.6 Minuten. Sobald der Prozess den Sollwert erreicht, zählt der Timer bis Null herunter (Timeout). Der Schaltzustand des Timerrelais bleibt bis zum Timeout unverändert. Der Funktion des Timers wird im folgenden Diagramm verdeutlicht

Nach Erreichen des Timeout kann der Timer neu gestartet werden, indem man RE-SET betätigt.

Die Timerfunktion wird unterbrochen im manuellen Regelmodus, Fehlermodus, Kalibrierungsmodus und während der Selbstadaptierung (Auto-Tune).

Bild 3.6 Dwell Timer Funktion

Wenn der Alarm als dwell timer konfiguriert ist, werden die Parameter ALHY und ALMD nicht angezeigt


Für einige Anwendungen ist es wünschenswert den angezeigten Temperatur-Istwert abweichend vom tatsächlichen Istwert einzustellen. Dies ist durch die Fühlerkorrekturfunktion einfach durchzuführen. Die SHIF Funktion ändert nur den Wert des Prozesswertes.

Beispiel:

Eine Regelstrecke besteht aus einem Heizelement, einem Temperaturfühler und einem zu erwärmenden Gut. Aufgrund des Designs und der Position der Komponenten des Systems kann der Fühler nicht näher an das zu erwärmende Gut positioniert werden. Aufgrund

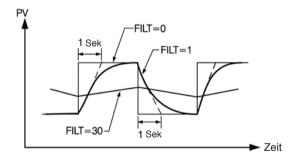

der Wärmeleitung zwischen Heizelement und Temperaturfühler kommt es hier zu einer Temperaturdifferenz. Wenn die Temperaturdifferenz z. B. 35°C beträgt und der Temperatursollwert am zu erwärmenden Gut 200°C beträgt muss die Regeltemperatur bzw. die Temperatur am Temperaturfühler 235°C betragen. Der Regler sollte dazu auf einen Fühlerkorrekturwert von -35°C eingestellt werden um 35°C vom aktuellen Anzeigewert zu subtrahieren. Dies wird den Regler dazu veranlassen das Heizelement zu schalten und den korrigierten Istwert auf den Sollwert einzuregeln.

Bild 3.7 Fühlerkorrektur

Bei bestimmten Anwendungen lässt sich der Istwert aufgrund dauernder Temperaturschwankungen schlecht ablesen. Um dieses zu verbessern, kann man einen im Regler integrierten Tiefpassfilter einsetzen. Es handelt sich dabei um einen Filter 1. Ordnung mit einer Zeitkonstante, die durch den FILT Parameter spezifiziert wird. Der Wert von FILT im Auslieferzustand beträgt 0.5 Sek. Mit FILT lässt sich die Zeitkonstante von 0 bis 60 Sekunden verändern. 0 Sekunden bedeutet, dass kein Filter für das Eingangssignal genutzt wird. Die Charakteristik des Filters wird durch das folgende Diagramm verdeutlicht.

Bild 3.8 Filtereigenschaften

Bemerkung: Der Filter ist nur für die Istwertanzeige verfügbar und wird nur für den Anzeigewert verwendet. Der Regler ist so konzipiert, dass er auf dass ungefilterte Eingangssignal regelt, auch wenn der Filter genutzt wird. Ein gefiltertes Signal könnte einen instabilen Prozess zur Folge haben, wenn es zur Regelung benutzt würde.

Der Regler wird in den **Fehlermodus** wechseln, wenn eine der folgenden Gegebenheiten eintritt:

- 1. SBER erscheint bei Fühlerbruch.
- 2. ADER erscheint wenn der A-D-Wandler des Reglers ausfällt.

Der Ausgang 1 führt die Fehlerübermittlungsfunktion aus, wenn der Regler in den Fehlermodus gelangt.

Ausgang 1 Fehleranzeige, falls aktiviert, wird ausgeführt:

- Wenn Ausgang 1 als proportionale Regelung (PB=0) konfiguriert ist, und BPLS als O1FT ausgewählt wird, dann wird der Ausgang 1 den bisher im Betrieb ermittelten Stellgrad ausgeben. Alternativ lässt sich auch ein Stellgrad von 0 – 100 % einstellen.
- 2. Wenn Ausgang 1 als proportionale Regelung (PB = 0) konfiguriert wird und ein Wert von 0 to 100.0 % als O1FT eingestellt wird, wird Ausgang 1 die Fehleranzeige ausführen. Der Wert des O1FT wird dann als Regelausgang 1 genutzt. Wenn Ausgang 1 als Ein/Aus-Regler genutzt wird (PB=0), dann wird Ausgang 1 zum Status OFF schalten, wenn OFF als O1FT gesetzt ist und umschalten auf ein, wenn ON als O1FT gesetzt ist.

Die Alarmfehleranzeige ist aktiviert, wenn der Regler in den Fehlermodus gelangt. Danach wird der Alarm auf ON oder OFF gestellt, je nachdem wie der Sollwert bei ALFT eingestellt ist.

⚠ Die Selbstadaptierung wird am Sollwert durchgeführt. Beim Einstellprozess wird der Wert um den Sollwert herum schwingen. Setzen Sie den Sollwert auf einen niedrigeren Wert, falls die Überschreitung des normalen Prozesswertes Schaden hervorrufen könnte.

Die automatische Selbstadaptierung wird unter folgenden Gesichtspunkten genutzt:

- Anfangseinstellung eines neuen Prozesses
- Der Sollwert wird erheblich gegenüber dem vorher eingestellten Wert geändert
- Das Regelergebnis ist unbefriedigend

Bedienung:

- 1. Das System wurde normal installiert.
- Stellen Sie die richtigen Werte im Setup-Menue des Reglers ein. Nutzen Sie keinen Nullwert für PB oder TI, da ansonsten die automatische Einstellung nicht funktioniert. Der LOCK-Parameter sollte auf NONE eingestellt sein.
- Stellen Sie den Sollwert auf die normale Prozesstemperatur oder niedriger ein, da eine mögliche Istwertüberschreitung während der Adaptierung Schäden hervorrufen könnte.
- 4. Drücken Sie und halten Sie bis R-L auf der Anzeige erscheint.
- 5. Drücken Sie \bigcirc für 5 Sekunden. Der AT Indikator wird anfangen zu blinken und die Selbstadaptierung beginnt.

Bemerkung: Die Rampenfunktion –falls genutzt – wird deaktiviert sobald die Selbstadaptierung beginnt. Die Selbstadaptierung wird deaktiviert sobald entweder der Fehlermodus oder die manuelle Einstellung aktiviert wird.

Verfahren:

Die Selbstadaptierung kann angewendet werden, entweder wenn der Prozess gerade anläuft (Kaltstart) oder wenn der Prozess sich in einem stabilen Stadium befindet (Warmstart).

Nachdem die automatische Selbstadaptierung ausgeführt wurde, wird der AT Indikator aktiviert und der Regler arbeitet mit den durch die Selbstadaptierung erhaltenen PID-Werten. Die PID Werte werden in dem nicht löschbaren Speicher gespeichert

REE- Auto-Tuning Fehler

Falls die automatische Selbstadaptierung fehl schlägt, erscheint eine ATER-Nachricht in der oberen Anzeige in folgenden Fällen:

- Falls PB 9000 (9000 PU, 900.0 °F oder 500.0 °C) übersteigt.
- Oder falls TI 1000 Sekunden übersteigt.
- Oder falls der Sollwert w\u00e4hrend des automatischen Einstellprozesses ge\u00e4ndert wird.

Lösungen zu REEr

- 1. Führe die automatische Einstellung nochmals durch.
- 2. Ändere den Sollwert nicht während des automatischen Einstellprozesses.
- 3. Setzen sie PB oder TI nicht auf Null.
- 4. Führen Sie die manuelle Adaptierung anstelle der Selbstadaptierung durch. (Siehe Punkt 3-12).
- 5. Drücken Sie RESET, um die REE- Meldung zu löschen.

Bei einigen wenigen Anwendungen kann die automatische Selbstadaptierung ungeeignet sein, um das gewünschte Ergebnis zu erreichen. Dann muss man die manuelle Adaptierung durchführen.

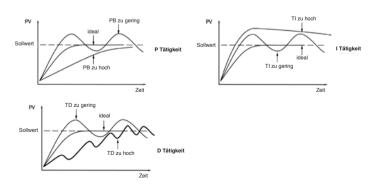
Falls die Regelung nach der Selbstadaptierung immer noch unbefriedigend ist, können die folgenden Regeln angewandt werden, um die PID Werte weiter anzupassen.

Anpassungssequenz	Symptom	Lösung
(1) Proportionalband (PB)	Langsame Sprungantwort	Minderung PB
	Starkes Überschwingen oder starke Schwankungen	Erhöhung PB
(2) Integralzeit (TI)	Langsame Sprungantwort	Minderung TI
	Instabilität oder Schwingungen	Erhöhung TI
(3) abgeleitete Zeit (TD)	Langsame Rückmeldung oder Schwingungen	Minderung TD
	Starkes Überschwingen	Erhöhung TD

Tabelle 3.2 PID Anpassung

Bild 3.9 zeigt die Auswirkungen der PID Anpassung.

Bedienung:


Um den manuellen Betrieb einzustellen, muss der LOCK Parameter auf NONE gesetzt sein, dann drücken Sie 6,2 Sekunden (Hand Control) erscheint auf der Anzeige. Drücken Sie 5 Sekunden Der Regler gelangt nun in den manuellen Regelmodus. H.... zeigt die Ausgangsregelvariabel für Ausgang 1 und C.... zeigt die Regelvariabel für Ausgang 2. Jetzt kann die Weniger/Mehrtaste genutzt werden, um den Prozentwert für den Heiz- oder Kühlausgang anzupassen.

Der Regler führt den offenen Regelkreis solange aus, wie er im manuellen Regelmodus bleibt.

Ausgang manuelle Regelung

Drücken Sie die R Taste, um in den normalen Anzeigemodus zurückzukehren.

Bild 3.9 Auswirkungen der PID Anpassung

Leistung

90-250 VAC oder 11-26 VDC/VAC, 47-63 Hz, 12VA, 5W Maximum

Eingang

Auflösung: 18 bit

Abtastrate: 5 mal/Sekunde

Maximaler Bereich: -2 VDC Minimum, 12 VDC Maximum

Temperaturauswirkung: ±1,5uV/°C

Auswirkungen Leitungswiderstand auf Fühler:

T/C: 0.2uV / ohm

3-adrig RTD: 2.6 °C/Ohm Widerstandsunterschied von zwei Leitungen

2-adrig RTD: 2.6 °C/Ohm Widerstandssumme von zwei Leitungen

Durchbrennstärke: 200 nA

Gewöhliches Gleichtaktunterdrückungsverhältnis (CMRR): 120dB

Normales Gleichtaktunterdrückungsverhältnis (NMRR): 55dB

Fühler brucherkennung: Fühler offen für TC, RTD Fühler kurz für RTD Eingang

Fühlerbruch Reaktionszeit:

Innerhalb von 4 Sekunden für TC und RTD

Eigenschaften:

Art	Temperaturbereich	Genauigkeit @ 25 C	Eingang Widerstand
J	-120°C-1000°C (-184°F-1832°F)	±2°C	2.2 ΜΩ
K	-200°C-1370°C (-328°F-2498°F)	±2°C	2.2 ΜΩ
Т	-250°C-400°C (-418°F-752°F)	±2°C	2.2 ΜΩ
Е	-100°C-900°C (-148°F-1652°F)	±2°C	2.2 MΩ
В	0°C-1800°C (32°F-3272°F)	±2 °C (200°C-1800°C)	2.2 ΜΩ
R	0°C-1767.8°C (32°F-3214°F)	±2°C	2.2 ΜΩ
S	0°C 1767.8°C (32°F-3214°F)	±2°C	2.2 MΩ
N	-250°C-1300°C (-418°F-2372°F)	±2°C	2.2 MΩ
L	-200°C-900°C (-328°F-1652°F)	±2°C	2.2 MΩ
PT100 (DIN)	-210°C-700°C (-346°F-1292°F)	±0.4°C	1.3 ΚΩ
PT100 (JIS)	-200°C-600°C (-328°F-1112°F)	±0.4°C	1.3 ΚΩ

AUSGANG

Ansteuerspannung für Halbleiterrelais: 14V DC / max. 40mA

ALARM

Alarm Relais: 2A / 240VAC, Lebensdauer: 200.000 Schaltzyklen bei ohmscher Last **Alarm Funktionen:** Ablauftimer, Abweichalarm High/Low, Bandalarm High/Low, Prozessalarm High/Low

Alarm Modus: Normal, Selbsthaltend, Sollwertverriegelt, Selbsthaltend + Sollwert-

verriegelt

Ablauftimer: 0.1-4553.6 Minuten

BEDIENOBERFLÄCHE

Duale 4-stellige LED-Anzeigen

Tastatur: 4 Tasten

Regelmodus Ausgang 1: entgegengesetzte (heizen) oder direkte (kühlen) Tätigkeit

ON-OFF: 0.1-90.0 (°F) hysteresische Regelung (P-Band = 0)

P or PD: 0-100.0% Regelabweichungsanpassung

PID: Fuzzy Logic

Proportionalband 0.1 ~ 900.0 °F Integrierzeit 0-1000 Sekunden Differenzierzeit: 0-360.0 Sekunden

Zykluszeit: 0.1-90.0 Sekunden

Manuelle Regelung: Heizen (MV1) und Kühlen (MV2)
Automatische Einstellung: Kaltstart und Warmstart

Fehlermodus: automatische Übertragung zum manuellen Modus bei Fühlerbruch

oder Schaden am A-D-Konvertierer

Rampenregelung: 0-900.0 °F / Minute oder 0-900.0 °F / h Rampenrate

DIGITALFILTER

Funktion: Erstauftrag

Zeitkonstante: 0, 0.2, 0.5, 1, 2, 5, 10, 20, 30, 60

Zweite Stellen programmierbar

UMGEBENE- UND PHYSIKALISCHE BEDINGUNGEN

Betriebstemperatur: -10 °C to 50 °C **Lagertemperatur:** -40 °C to 60 °C

Feuchtiakeit: 0 to 90 % RH (nicht kondensierend)

Einsatzhöhe: 2000m maximal **Verunreinigung:** Stärke 2

Isolationswiderstand: 20 Mohms min. (bei 500 VDC)

Dielektrische Festigkeit: 2000 VAC, 50 / 60 60 Hz in der Minute

Vibrationswiderstand: 10-55 Hz, 10 m/s2 für 2 Stunden

Stoßfestigkeit: 200 m/s2 (20 g)

Zierleiste: schwerentflammbarer Polykarbonat

Abmessungen: 48mm(W) X 48mm(H) X 116mm(D), 105 mm tief hinter der Blende

Gewicht: 150 g

Schutzklasse: IP65 für die Blende.

Die Geräte dürfen nicht draußen in Betrieb genommen werden.

TABELLE A.1 FEHLERCODES UND KORREKTURMASSNAHMEN

Fehler- code	Anzeigen- symbol	Fehlerbeschreibung	Korrekturmaßnahme
4	ErOY	Falsche Einstellwerte wurden genutzt. Bevor die Kühlfunktion als Ausgang 2 genutzt wird, muss DIRT (Kühltätigkeit) als Ausgang 1 genutzt werden, ansonsten ist der PID-Modus nicht als Ausgang 1 genutzt (PB = 0 und/oder TI = 0)	Prüfen und korrigieren Sie die Einstellwerte von Ausgang 2, PB, Tl und Ausgang 1. Falls Ausgang 2 zur Kühlregelung genutzt wird, sollte die Regelung im PID Modus (PB = 0, TI = 0) sein und Ausgang 1 sollte den umgekehrten Modus (Heiztätigkeit) nutzen, nutzen Sie Ausgang 2 nicht für die Kühlregelung.
10	Er10	Kommunikationsfehler: schlechte Funktion	Korrigieren Sie die Kommunikationssoftware, um den Protokollanforderungen zu entsprechen.
11	Erll	Kommunikationsfehler: Wert ist außerhalb des Bereichs	Nebensender
14	ErlY	Kommunikationsfehler: Versuch einen nur lesbaren Wert oder einen geschützten Wert einzugeben	Geben Sie keine lesbaren Werte oder geschützten Werte an den Nebensender.
15	Er (S	Kommunikationsfehler: ein Wert außerhalb des Bereichs wurde gewählt	Keine Daten außerhalb des Bereichs ins Hilfsjournal geben.
26	R⊱E-	Die automatische Einstellung ist Fehl geschlagen	Die PID-Werte nach der automatischen Einstellung liegen außerhalb des Bereichs. Führen Sie nochmals die automatische Einstellung durch. Ändern Sie nicht den Sollwert während der automatischen Einstellung. Führen Sie eine manuelle anstelle eine automatischen Einstellung durch. Stellen Sie den PB nicht auf Null ein. Stellen Sie T1 nicht auf Null ein. Drücken Sie die Reset-Taste.
29	EEPE	EEPROM kann nicht korrekt geschrieben werden	Regler an Hotset GmbH einschicken.
30	CJEr	Vergleichsstellenkompensation bei schlechter Funktion des Ther- moelements	Regler an Hotset GmbH einschicken.
39	SbEr	Fühlerbruch (Eingang)	Fühler austauschen.
40	RdEr	A-D-Wandler oder anliegende Komponenten funktionieren nicht	Regler an Hotset GmbH einschicken.

hotset

Hotset GmbH Hueckstraße 16 58511 Lüdenscheid Germany

Telefon +49 / 23 51 / 43 02-0

www.hotset.com